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Abstract

A new approach for stabilizing unstable reduced order models (ROMs) for linear time-
invariant (LTI) systems through ana posteriori post-processing step applied to the algebraic
ROM system is developed. The key idea is to modify the unstable eigenvalues of the ROM sys-
tem by moving these eigenvalues into the stable half of the complex plane. It is demonstrated that
this modification to the ROM system eigenvalues can be accomplished using full state feedback
(a.k.a. pole placement) algorithms from control theory. This approach ensures that the modified
ROM is stable provided the system’s unstable poles are controllable and observable; however,
the accuracy of the stabilized ROM is not guaranteed. To remedy this difficulty and guarantee an
accurate stabilized ROM, a constrained nonlinear least-squares optimization problem for the sta-
bilized ROM eigenvalues in which the error in the ROM output is minimized is formulated. This
optimization problem is small and therefore computationally inexpensive to solve. Performance
of the proposed algorithms is evaluated on two test cases forwhich ROMs constructed via the
proper orthogonal decomposition (POD)/Galerkin method suffer from instabilities.

Keywords:
Reduced order model (ROM); proper orthogonal decomposition (POD)/Galerkin projection;
linear time-invariant (LTI) system; stability; pole placement; constrained nonlinear
least-squares.

1. Introduction

As computing power has increased, so has the complexity of multi-physics models. Simul-
taneously, there has been a continuing push to incorporate uncertainty quantification (UQ) into
high-fidelity simulations. Unfortunately, integrating UQtechniques into high-fidelity simulation
codes can present an intractable computational burden due to the high-dimensional systems that
arise, as well as the need to run these simulations many timesin order to explore a space of
design parameters or uncertain inputs.
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Reduced order modeling is a promising tool that can enable not only UQ, but also on-the-
spot decision-making, optimization and/or control. A reduced order model (ROM) is a surrogate
model constructed from a full order (high-fidelity) model (FOM) that retains the essential physics
and dynamics of the FOM, but has a much lower computational cost. Numerous approaches
to construct ROMs exist, from simply running a numerical simulation on a coarser mesh, to
surrogates obtained from data-fitting (e.g., Kriging interpolation). More commonly, however,
the term “reduced order model” refers to a projection-basedreduced order model, the subject of
the present work. The basic idea of projection-based reduced order modeling is to project the
state of a large dimensional space onto a small dimensional subspace that contains the essential
dynamics of the system. Examples of projection-based modelreduction approaches include
proper orthogonal decomposition (POD) [13, 14, 9], balanced proper orthogonal decomposition
(BPOD) [19, 11], balanced truncation [16, 5], the reduced basis method [15, 32], and Krylov-
based techniques [31].

In order for a ROM to serve as a viable mathematical model of a physical system of interest,
it is important that it preserves certain crucial properties of the original system. Particularly
important is that the ROM maintains numerical stability of its underlying physical system, as
stability is a prerequisite for the ROM’s accuracy and convergence. Some projection-based model
reduction techniques give rise to ROMs with ana priori stability guarantee. One example of such
a method is balanced truncation [16, 5]. Unfortunately, thecomputational cost of this method,
which requires the computation and simultaneous diagonalization of infinite controllability and
observability Gramians, makes balanced truncation computationally intractable for systems of
very large dimensions (i.e., systems with more than 10,000 degrees of freedom (dofs) [12]).
Among the most popular model reduction techniques that are computationally tractable for very
large systems are the POD method [13, 14, 9] and the BPOD method [19, 11]. In general,
these methods lack ana priori stability guarantee. In [18], Amsallemet al. suggest that POD
and BPOD ROMs constructed for linear time-invariant (LTI) systems in descriptor form tend
to possess better numerical stability properties than POD ROMs constructed for LTI systems in
non-descriptor form. Although heuristics such as these exist, it is in general unknowna priori
if a ROM constructed using POD or BPOD will preserve the stability properties of the high-
fidelity system from which the model was constructed. Hence,a ROM might be stable for a
given number of modes, but unstable for other choices of basis size; see [10, 3, 4] for examples
of this for POD models of compressible flow.

A literature search reveals that approaches for developingstability-preserving projection-
based ROMs based on POD and BPOD fall into roughly three categories, overviewed briefly
below.

The first category of methods derives (a priori) a stability-preserving model reduction frame-
work, often specific to a particular equation set. In [12], Rowley et al. show that Galerkin pro-
jection preserves the stability of an equilibrium point at the origin if the ROM is constructed in
an “energy-based” inner product. In [3, 4], Baroneet al. demonstrate that a symmetry transfor-
mation leads to a stable formulation for a Galerkin ROM for the linearized compressible Euler
equations [3, 4] and non-linear compressible Navier-Stokes equations [17] with solid wall and
far-field boundary conditions. In [1], Serreet al. propose applying the stabilizing projection
developed by Baroneet al. in [3, 4] to a skew-symmetric system constructed by augmenting a
given linear system with its adjoint system. This approach yields a ROM that is stable at finite
time even if the solution energy of the full-order model is growing. In [35, 40], Sirisupet al.
develop a method for correcting long-term unstable behavior for POD models using a spectral
viscosity (SV) diffusion convolution operator. The advantage of approaches such as these is they
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are physics-based, and guaranteea priori a stable ROM; the downside is that they can be dif-
ficult to implement, as access to the high-fidelity code and/or the governing partial differential
equations (PDEs) is often required.

A second category of methods is aimed to remedy the so-called“mode truncation instabil-
ity”. These methods [36, 37, 38, 23, 41], motivated by the observation that higher order modes
can give rise to nonphysical instabilities in the ROM system, are often physics-based and mini-
mally intrusive to the ROM. In [23], a ROM stabilization methodology that achieves improved
accuracy and stability through the use of a new set of basis functions representing the small,
energy-dissipation scales of turbulent flows is derived by Balajewiczet al. The stabilization of
ROMs using shift modes and residual modes was proposed in [37] and [38] by Noacket al. and
Bergmannet al. respectively. Other authors, e.g., Terragniet al. [41], have demonstrated that
the stability and performance of a ROM can be improved by adapting the POD manifold to the
local dynamics.

The third category of approaches are those which stabilize an unstable ROM through a post-
processing (a posteriori) stabilization step applied to an unstable algebraic ROM system. Ideally,
the stabilization only minimally alters the ROM physics, sothat the ROM’s accuracy is not
sacrificed. In [2], Amsallemet al. propose a method for stabilizing projection-based linear
ROMs through the solution of a small-scale convex optimization problem. In [22], a set of
linear constraints for the left-projection matrix, given the right-projection matrix, are derived
by Bondet al. to yield a projection framework that is guaranteed to generate a stable ROM.
In [20], Zhu et al. derive some large eddy simulation (LES) closure models for POD ROMs
for the incompressible Navier-Stokes equations, and demonstrate numerically that the inclusion
of these LES terms yields a ROM with increased numerical stability. In [39], Couplet et al.
propose methods for correcting the behavior of a low-order POD-Galerkin system through a
coefficient calibration/minimization. A nice feature of these and similar approaches is that they
are easy to implement: often the stabilization step can be applied in a “black-box” fashion to
an algebraic ROM system that has already been constructed. However, the approaches can give
rise to inconsistencies between the ROM and FOM physics, thereby limiting the accuracy of the
ROM.

The present work proposes and develops anewROM stabilization method for LTI systems
that falls into the second category of methods described above. This approach can be used to
stabilize ROMs constructed usinganychoice of reduced basis (e.g., POD [8], balanced truncation
[16, 5], proper generalized decomposition [42], among others). The key idea, motivated by the
concept of full state feedback (a.k.a. pole placement) in control theory, is to change the unstable
eigenvalues of a system matrix by pushing them into the stable half of the complex plane. The
eigenvalues of a ROM system matrix can be modified by applyingdirectly full state feedback
(a.k.a. pole placement) algorithms from control theory [6,7], that is, by adding to the ROM
system a linear feedback control term, and solving for the feedback matrix such that the stabilized
ROM system has a desired set of eigenvalues. However, this approach can change the ROM
physics, thereby making the ROM inaccurate. To alleviate this difficulty, an alternative algorithm
is developed in which a constrained nonlinear least-squares optimization problem that minimizes
the error in the ROM output (thereby maximizing the accuracyof the ROM) is formulated. The
said optimization problem is small, with at most as many dofsas the number of dofs in the ROM,
and therefore computationally inexpensive to solve.

The remainder of this paper is organized as follows. Galerkin projection-based model reduc-
tion for LTI systems is reviewed in Section 2. Section 3 presents the two ROM stabilization algo-
rithms described above. The first employs full state feedback (a.k.a. pole placement) algorithms
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from control theory to change an unstable ROM’s unstable eigenvalues (Section 3.1); the second
solves a constrained nonlinear least-squares optimization problem for the ROM eigenvalues in
which the ROM output error is minimized, and changes the eigenvalues directly in the ROM
system using the eigenvalue decomposition (Section 3.2). The performance of these eigenvalue
reassignment algorithms is evaluated on two benchmarks in Section 4: the international space
station (ISS) problem (Section 4.1), and a problem involving a model of an electrostatically ac-
tuated beam (Section 4.2). For both test cases, the ROMs are constructed via the POD/Galerkin
method and suffer from instabilities. The numerical results reveal the superiority of the second
stabilization algorithm over the first, and demonstrate that the second stabilization algorithm
delivers a stable and accurate ROM. Conclusions are offered in Section 5.

2. Projection-based model reduction for LTI systems

In this section, projection-based model reduction appliedto LTI systems is reviewed briefly.
A system is called time-invariant if the output response fora given input does not depend on
when that input is applied [6, 7]. In constructing a projection-based reduced order model, the
basic idea is to project the state space of a large dimension onto a small dimensional subspace
that contains the essential dynamics of the system. Consider an LTI FOM:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

(1)

where “·” indicates differentiation with respect to time, i.e.,ẋ ≡ ∂x
∂t ; x(t) ∈ RN is the full order

state vector;u(t) ∈ RP is the vector of control variables;y(t) ∈ RQ is the output. The matrices
A ∈ RN×N, B ∈ RN×P andC ∈ RQ×N are constant matrices (in particular, they are not a function
of time t). A system of the form (1) would arise, for instance, by discretizing a linear set of PDEs
in space using a discretization scheme, e.g., the finite element method.

The general approach to Galerkin projection-based model reduction consists of two steps:

Step 1: Calculation of a reduced basis of orderM, with M << N.
Step 2: Projection of the governing system (1) onto the reduced basis in some inner product.

In the present work, it will be assumed the projection is doneat the level of the discrete
equations (1) and in theL2 inner product, defined by

(u, v) ≡ uTv, (2)

for u, v ∈ R
N. To simplify the presentation, it will also be assumed that the ROM is constructed

using a Galerkin projection, where the solution is approximated by and projected onto the same
reduced basis. It is emphasized that the approaches developed in this work are not restricted to
ROMs constructed using Galerkin projection; a more generalPetrov-Galerkin projection can be
employed.

Let ΦM ∈ RN×M denote a reduced basis for (1), respectively. Assume this matrix has full
column rank, and is orthonormal in the inner product (2), so thatΦT

MΦM = I M, whereI M denotes
theM × M identity matrix. First, the solution to the FOM system (1) isapproximated as:

xN(t) ≈ ΦMxM(t), (3)
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wherexM(t) denotes the ROM solution (to be determined in solving the ROM). Substituting (3)
into (1) and projecting the resulting system onto the reduced basisΦM, the following is obtained:

ẋM(t) = AMxM(t) + BMu(t)
yM(t) = CMxM(t),

(4)

whereyM(t) is a reduced approximation of the output, and

AM = Φ
T
MAΦM ∈ R

M×M , BM = Φ
T
MB ∈ R

M×P, CM = CΦM ∈ R
Q×M . (5)

The dynamical system (4) is the ROM LTI system. It is small (M × M with M << N), and de-
scribes accurately the dynamics of the full order system (1)for some set of conditions. The ROM
solutionxM(t) is obtained by advancing (4) forward in time using a time-integration scheme.
Since the FOM considered here is linear, the projection terms in (5) are not time-dependent.
Hence, these terms can be pre-computed and stored in the offline stage of the model reduction
– in particular, they need not be re-computed at each time step of the online time-integration
stage of the ROM. The reduced basisΦM can be calculated using a number of approaches, e.g.,
POD [13, 14, 9], BPOD [19, 11], balanced truncation [16, 5], goal-oriented methods [10], or the
reduced basis method [15, 32].

3. ROM stabilization via eigenvalue reassignment

One problem that can arise in projection-based model reduction and addressed herein is ROM
instability. In the present work, the term “stability” refers to Lyapunov stability, defined below.

Definition 3.1 (Lyapunov-Stability [33]):An LTI system (1) is stable in the sense of Lyapunov if
and only if all the eigenvalues ofA have real parts less than or equal to zero, and those with real
parts equal to zero are non-repeated.

For popular model reduction techniques such as POD and BPOD,a ROM is not guaranteed
to preserve the stability properties of the FOM from which itwas constructed. This is because
orthogonal and bi-orthogonal projections do not in generalpreserve stability. Hence, for some
number of modesM, the ROM system matrixAM may be unstable even though the FOM system
matrixA is stable. This issue is particularly problematic for strongly stiff systems, and can arise
in computational fluid dynamics applications (e.g., high Reynolds number 3D turbulent flow
problems, compressible flow problems [10, 3, 4]), as well as computational structural dynamics
applications (e.g., the second order Lagrangian systems considered in this paper).

In the following subsections, two algorithms are proposed for stabilizing (4) by modifying
the unstable eigenvalues ofAM through a “black-box” post-processing step applied to the given
(unstable) ROM system, meaning they can be used to stabilizeROMs fromanyapplication area.
It will be assumed from this point onward that the matrixA defining the FOM system (1) is
stable. Algorithm 2 is the primary contribution of this paper. Algorithm 1 is provided, as it
served as a strategic foundation for the final development (Algorithm 2). It is given here not only
for the sake of completeness, but also because it is shown in Section 3.3 that Algorithm 2 can be
seen as a variant of Algorithm 1.
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3.1. Algorithm 1: ROM stabilization via full state feedback(a.k.a. pole placement)

The first ROM stabilization algorithm is motivated by the observation that (4) is an LTI
system, and, as such, can be stabilized using full state feedback, or pole placement, methods
from control theory [6, 7]. The general approach of stabilizing an LTI system using full state
feedback is reviewed below.

Consider the open loop ROM LTI system (4), where it is assumedu(t) is given, so that
BMu(t) represents, for instance, a given source for the equations. The objective of full state
feedback (pole placement) is to redesign the dynamics of thesystem (4) through feedback of the
state. IfAM is unstable, it is desired to redesign the system such that itis stable. Towards this
end, the open-loop system (4) is transformed into a closed-loop system, and a feedback controller
that positions the closed loop eigenvalues of the system is developed. The first step is to select
a control matrixBC ∈ RM×J for some integerJ, and modify the system (4) by adding to it the
controlBCuC(t):

ẋM(t) = AMxM(t) + BMu(t) + BCuC(t)
yM(t) = CMxM(t).

(6)

Here,uC(t) ∈ RJ is a control that will be designed to modify the dynamics of the original system
(4) such that it is stable. For an LTI system representing some physical dynamics,BC is typically
selected to represent a physical control that can be imposedon the system, e.g., actuation applied
to a boundary of a fluid domain. Next, a linear control law of the form uC(t) = −KCxM(t) is
assumed, whereKC ∈ RJ×M is the control matrix, to be determined. Substituting this law into
(6) and rearranging, the following is obtained:

ẋM(t) = (AM − BCKC)xM(t) + BMu(t)
yM(t) = CMxM(t).

(7)

The system (7) is a system of the form (4) but withAM replaced byÃM, where

ÃM ≡ AM − BCKC. (8)

The reader can observe that if it is possible to compute the control matrix KC such thatÃM is
stable, the ROM system (6) will be stable.

In order to formulate a well-posed ROM stabilization algorithm based on the approach out-
lined above, a number of questions need to be addressed:

1. How should the control matrixBC be selected? Typically, when applying pole placement
algorithms, aphysicalsystem is stabilized using aphysicalcontroller. In this case, the
controller matrixBC is added at the level of the algebraic system (6). In this context, what
doesBC mean? What should it mean?

2. What eigenvalues should the stabilized ROM matrixÃM (8) be prescribed to have? It
is clear that the eigenvalues should lie in the stable half ofthe complex plane, but what
physical values should they have?

3. Does the solutionKC to the pole placement problem exist?
4. How has the stabilization affected the accuracy of the ROM? By modifying the ROM

system (4), inconsistencies between the FOM and ROM physicshave been introduced.

In this subsection, only question 3, the existence question, will be addressed. Answering this
question gives rise to a preliminary ROM stabilization algorithm, referred to as “Algorithm 1”.
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The remaining questions are addressed through the formulation of “Algorithm 2”, described in
Section 3.2.

Before formulating an algorithm which guarantees the existence of the solution to the pole
placement problem described above, it is useful to recall the following theorem.

Theorem 3.1.1(quoted from [6]): If the pair (AM,BC) is controllable11, there exists a feedback
uC(t) = −KCxM such that the eigenvalues ofÃM (8) can be arbitrarily assigned.

In general, the pair (AM,BC) may not be controllable. However, it is possible to apply The-
orem 3.1.1 by working in the controllable and observable22 subspaces ofAM andBC, which can
be isolated through the Kalman decomposition. A detailed discussion of the Kalman decompo-
sition can be found in classical control theory texts, e.g.,[6, 7]. The key result of the Kalman
theorem is that the state space can be decomposed into four parts: a part that is reachable and
observable, a part that is reachable but not observable, a part that is not reachable but observable
and a part that is neither reachable nor observable. The procedure is summarized in Algorithm 1.

Algorithm 1
• Pick a control matrixBC, e.g.,BC = 1M.
• GivenBC, use the Kalman decomposition to isolate the controllable and observable parts of
AM andBC, call themAco

M = UAMUT andBco
C = UBC respectively.

• Compute the eigenvaluesλco
1 , ..., λ

co
Mco of Aco

M .
• Reassign the unstable eigenvalues ofAco

M to make them stable, e.g., fork = 1 to Mco, set

λk = min{Re(λco
k ),−Re(λco

k )} + i · Im(λco
k ), (11)

whereRe(z) andIm(z) denote respectively the real and imaginary parts of a complex number
z ∈ C, andi ≡

√
−1.

• ComputeKC such thatAco
M − KCBco

C has these eigenvalues using full state feedback (a.k.a
pole placement) algorithms from control theory.
• SetAM = UT(Aco

M − KCBco
C )U.

Typically in full state feedback, the matrixBC represents a physical control that would be
applied to a physical system of the form (4) so as to stabilizethis system. The situation of interest
here is not entirely comparable, as it has been assumed that thephysicalsystem underlying (4)
is stable (and hence does not need stabilization via full statefeedback); it is thealgebraicROM

11An LTI system (1) is controllable (a.k.a. reachable) if for any x0, x f ∈ R
N, there exists aT > 0 andu : [0,T] → R

such that the corresponding solution satisfiesx(0) = x0 andx(T) = x f [6, 7]. To test for controllability of a linear system,
it is sufficient to check the rank of the controllability matrix

Wc ≡
(

B, AB, · · · , AN−1B
)

. (9)

The LTI system (1) is controllable if and only if the controllability matrix (9) is invertible [7, 6].
22 An LTI system (1) is observable if for anyT > 0 it is possible to determine the state of the systemx(T) through

measurements ofy(t) andu(t) on the interval [0,T] [6, 7]. To test for observability of a linear system, it is sufficient to
check the rank of the observability matrix

WT
o ≡

(

C, CA, · · · , CAN−1
)

. (10)

The LTI system (1) is observable if and only if the observability matrix (10) is full rank [6, 7].
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system (4) that is unstable, and hence the matrixBC is added to the system at the algebraic level.
This scenario complicates the interpretation of (and therefore the choice of)BC. In general, it
can be argued that the choice ofBC does not matter provided the unstable eigenvalues ofAM

are controllable and observable given the choice ofBC. In the numerical example studied below
(Section 4.1),BC is selected to be a vector of all ones.

It remains to provide some discussion of approaches for selecting the eigenvalues of the
stabilized matrixÃM. One possible choice is to replace the real parts of the unstable eigenvalues
of AM with their negatives (11), or some negative scaled multipleof these values. Another
option is to try to match the eigenvalues of the stabilized ROM matrix ÃM with the eigenvalues
of the FOM matrixA (provided the computational resources to compute the FOM eigenvalues
are available, which may not be the case for very large systems). In general, the eigenvalues of
a stable ROM will lie on or near the manifold of the eigenvalues of the FOM from which the
ROM was constructed. This is illustrated in Figure 1, which shows the eigenvalue manifold of
the FOM matrixA and a ROM matrixAM for an M = 20 mode ROM constructed via balanced
truncation [16, 5] for a variant of the international space station (ISS) benchmark (Section 4.1).
In fact, if M = N in a ROM, that is, a ROM is constructed with a full basis of the spaceRN,
AM ∼ A (as can be seen from (5)), so thatAM will have the same eigenvalues asA.
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−40
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20
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80
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20 mode BT ROM

Figure 1: Eigenvalue manifold of FOM matrixA and ROM matrixAM for an M = 20 mode ROM constructed via
balanced truncation for a variant of the ISS benchmark (Section 4.1)

3.2. Algorithm 2: ROM stabilization through solution of constrained nonlinear least squares
optimization problem

The primary downside of Algorithm 1 (Section 3.1) is it is uncleara priori how a particular
choice of the control matrixBC and stabilized eigenvalues will affect the accuracy of the resulting
stabilized ROM. This problem is remedied in the present section through the development of a
new algorithm, “Algorithm 2”. In this algorithm, the eigenvalues of the stabilized matrix̃AM

are determined such that the ROM output solution deviates minimally from the FOM output
8



solution. Hence, questions 2 and 4 in Section 3.1 are addressed explicitly. As will be clear
shortly, Algorithm 2 does not require the selection of a control matrixBC (question 1).

Consider the ROM LTI system (4). Note that it is possible to work out analytically in closed
form the exact solution to this system. The reader may verifythat the solution to this system is
given by

xM(t) = exp(tAM)xM(0)+
∫ t

0
exp{(t − τ)AM}BMu(τ)dτ. (12)

In equation (12), exp(·) denotes the matrix exponential. It is worthwhile to note that this quantity
is not an issue to compute, as the ROM system matrixAM is small. Given the solution for the
ROM state vector (12), the ROM output is given by

yM(t) = CM

[

exp(tAM)xM(0)+
∫ t

0
exp{(t − τ)AM}BMu(τ)dτ

]

. (13)

The existence of an analytical solution to the ROM LTI system(4) motivates the formulation
of the following optimization problem, to be solved for the eigenvalues of the stabilized ROM
system:

min
λu

i

K
∑

k=1

||yk − yk
M ||22.

s.t. Re(λu
i ) < 0, i = 1, ..., L

(14)

The optimization is over the unstable eigenvalues of the original ROM system matrixAM, de-
noted byλu

i , for i = 1, .., L whereL ≤ M is the number of unstable eigenvalues ofAM. The
shorthandyk denotes the FOM output at timetk, i.e.,yk ≡ y(tk). In a model reduction approach
based on an empirical basis computed from a set of snapshots of the high-fidelity solution, e.g.,
the POD or BPOD method, these values are available at the snapshot times. The shorthandyk

M
denotes the ROM output at timetk, i.e.,yK

M ≡ yM(tk). It is given by the formula (13). The con-
straint in (14) ensures that the stabilized ROM eigenvaluesare in the stable half of the complex
plane HereRe(z) denotes the real part of a complex numberz ∈ C. Equation (14) is a constrained
nonlinear least-squares optimization problem with inequality constraints.

Remark that the optimization problem (14) is small: there are at mostM dofs, and solving
the problem does not require operating on any matrices that are of sizeO(N). This optimization
problem can be solved using standard algorithms for constrained optimization, e.g., an SQP
algorithm with line search globalization, BFGS for Hessianapproximations, and an interior point
method to handle the inequality constraints [30].

An interesting question that arises is whether the solutionto the optimization problem (14) is
unique. A sufficient condition for a minimization problem of the form

min
x

f (x), (15)

wherex ∈ Rn is a real vector andf : Rn → R is a smooth function, to have a unique solution
is for f to be convex [30]. In this case, any stationary point off is a global minimizer off , and
hence a local minimizer off will be the global minimizer off . It is straightforward to show that
the objective function in (14) is not necessarily convex. Since convexity is a sufficient but not a
necessary condition for uniqueness of the solution to (14),the optimization problem could have
a unique solution, but this scenario is not guaranteed. The numerical tests performed in Section
4 suggest that the optimization problem (14) has in general multiple solutions.
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It turns out that it is convenient to implement and solve the optimization problem (14) in the
“characteristic variables”, defined byzM(t) = S−1

M xM(t), whereS−1
M is the matrix that diagonalizes

AM, i.e.,AM = SMDMS−1
M . The steps of the stabilization are detailed in Algorithm 2.Note that,

although it is assumed hereAM is diagonalizable, the extension to non-diagonalizableAM is
straightforward. In this case, the eigenvalue decomposition in Algorithm 2 (16) is replaced with
the Jordan decomposition.

Algorithm 2
• Diagonalize the ROM matrixAM:

AM = SMDMS−1
M . (16)

• Initialize a diagonalM × M matrix D̃M.
• Set j = 1.
• for i = 1 to M

if Re(DM(i, i)) < 0
SetD̃M(i, i) = DM(i, i).

else
SetD̃M(i, i) = λu

j .
endif

endfor
• Incrementj ← j + 1.
• Solve the optimization problem (14) for the eigenvalues{λu

j } with yM(t) given by

yM(t) = CM

[

SM exp(tD̃M)S−1
M xM(0)+

∫ t

0
SM exp{(t − τ)D̃M}S−1

M BMu(τ)dτ

]

, (17)

using an optimization algorithm.
• EvaluateD̃M at the solution of the optimization problem (14).
• The stabilized LTI ROM system is now given by

ẋM(t) = ÃMxM(t) + BMu(t)
yM(t) = CMxM(t),

(18)

whereÃM = SMD̃MS−1
M .

3.3. Connection between Algorithm 1 and Algorithm 2
One notable difference between Algorithms 1 and 2 is that, unlike the former algorithm, the

latter algorithm does not employ directly full state feedback (a.k.a. pole placement) routines
from control theory to solve for the stabilized ROM matrixÃM. However, it turns out that it is
possible to show that Algorithm 2 is equivalent to Algorithm1 for a specific choice of control
matricesBC andKC.

SupposeAM hasL ≤ M unstable eigenvaluesλu
k, each with corresponding eigenvectorsu

k.
Let λ̃u

k denote the stabilized value ofλu
k, obtained by solving the optimization problem (14). The

reader can verify that̃AM in (18) is equivalent to

ÃM = AM − BCKC, (19)
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where
BC =

(

su
1, · · · , su

L

)

∈ R
M×L (20)

KC =



































λu
1 − λ̃u

1 0 0 · · · 0
0 λu

2 − λ̃u
2 0 · · · 0

...
...

. . .
...

...

0 0 0 λu
L − λ̃u

L 0



































S−1
M ∈ R

L×M
. (21)

4. Numerical experiments

The performance of the ROM stabilization algorithms described in Section 3 is now assessed
on two benchmarks: the international space station (ISS) benchmark (Section 4.1), and a bench-
mark involving a one-dimensional model of an electrostatically actuated beam (Section 4.2).
Although the applications considered in this section come from the field of structural mechanics,
the ROM stabilization algorithms developed in this work canpotentially be used to build stable
ROMs foranyapplication. For both test cases, the reduced basisΦM is constructed using the
POD, and the projection step is a Galerkin projection in theL2 inner product. Discussed in de-
tail in Lumley [8] and Holmeset al. [9], POD is a mathematical procedure in which, given an
ensemble of data and an inner product, an empirical basis is constructed. This basis, the POD
basis, is optimal in the sense that it describes more energy (on average) of the ensemble in the
chosen inner product than any other linear basis of the same dimensionM. For a discussion of
the details of the POD algorithm, the reader is referred to [8, 9].

Typically, the size of a reduced POD basis, namelyM, is calculated using an energy criterion.
That is, M is selected such that the reduced basisΦM captures some fixed percentage of the
snapshot energy, e.g., 95% or 99% (see [8, 9]). For the problems considered here,M is chosen
to be the smallest integer such that: (1) the basisΦM captures at least 99% of the snapshot
energy, (2) the resulting POD/Galerkin ROM has at least one unstable eigenvalue, and (3) the
POD/Galerkin ROM goes unstable during the time horizon considered. This strategy of choosing
M is a natural one given the objective of this paper: to evaluate the ROM stabilization algorithms
developed in Section 3.

For both test cases considered, the error in the ROM output relative to the FOM output is
calculated and reported. This error is denotedErel and computed according to the following
formula:

Erel =

√

√

∑K
k=1 ||yk − yk

M ||22
∑K

k=1 ||yk||22
. (22)

Here,yk ≡ y(tk) denotes the snapshot FOM output at timetk, andyk
M ≡ yM(tk) denotes the ROM

output at timetk.
For the ISS example (Section 4.1) the performance of Algorithm 1 and the performance of

Algorithm 2 are evaluated. This comparison is intended to highlight the superiority of Algorithm
2 over Algorithm 1. For the sake of brevity, results for only Algorithm 2 (established in the
context of the ISS example as the superior algorithm) are shown for the electrostatically actuated
beam example (Section 4.2).

To solve the constrained nonlinear least squares optimization at the heart of Algorithm 2
(14), thefmincon function in the MATLAB optimization toolbox [29, 30] is employed. The
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Algorithm option required by this function is set tointerior-pointwith exact (analytic) Ja-
cobians. An analytic expression for the Jacobian of the objective function for the specific case of
u(t) = 0 and one output of interest in (14) can be found in Section A.1 of the Appendix. Deriving
and implementing an analytic Jacobian is recommended over using finite difference Jacobians
calculated within the MATLAB optimization toolbox. Since analytic Jacobians are exact, they
are accurate. In contrast, finite difference Jacobians can be inaccurate for some problems as a
result of an arbitrary selection of the finite difference increment. Moreover, the solution of the
optimization problem (14) is much faster with exact Jacobian due to fewer required function
evaluations. With exact Jacobians, the number of function evaluations per optimization step is
constant. In particular, it does not grow withL, the number of eigenvalues reassigned by the
optimization algorithm. The defaultfmincon settings for this method are used, which can be
found in [29].

Note that thefmincon function will compute only real solutions to an optimization problem.
In general the eigenvalues of the matrixAM may be complex, however. To allow thefmincon
algorithm to compute complex eigenvalue solutions of the ROM stabilization optimization prob-
lem (14), a complex-valued functional form forλu

j may be assumed. In this approach,λu
j in line

9 of Algorithm 2 is replaced with

λu
j ← λur

j + i · λuc
j ∈ C, λur

j , λ
uc
j ∈ R, (23)

(wherei ≡
√
−1) and (14) is solved forλur

j , λ
uc
j ∈ R subject to the constraint thatλur

j < 0. Since
complex eigenvalues ofAM occur in complex-conjugate pairs, ifλu

j has the form (23), thenλ j+1

in Algorithm 2 must have the form

λu
j+1 = λ

ur
j+1 − i · λuc

j+1 ∈ C, λur
j+1, λ

uc
j+1 ∈ R. (24)

It follows that the approach of assuming complex-conjugatepair solutions to (14) does not give
rise to more dofs than the default approach of solving for real solutions to this problem. In fact,
the former approach has fewer constraints.

The numerical results section includes comparisons of the following CPU times for both
problems considered:

• The CPU time required for the time-integration of the FOM.

• The CPU time required for the offline (snapshot collection, loading of system matri-
ces/snaptions, calculation of the POD basis, Galerkin projection, and numerical solution
of the optimization problem (14)) stage of the POD/Galerkin ROMs.

• The CPU time required for the online (time-integration) stage of the POD/Galerkin ROMs.

All computations are performed in serial using MATLAB’s linear algebra capabilities on a Linux
workstation with 6 Intel Xeon 2.93 GHz CPUs. Note that the FOMCPU times do not include
the time to discretize the relevant PDEs using the finite element method and assemble the global
system matrix. This is due to the fact that the matrices defining the FOM were downloaded from
a model reduction benchmark repository, and access to the high-fidelity code that generated these
matrices is not available to the authors.

In general, ROMs are employed for many-query and/or real-time analysis. In these contexts,
it is critical that the online time-integration stage of theROM has a low computational cost and
fast run-time. Although the offline construction of the reduced order model, which includes

12



the collection of snapshots, the construction of the POD basis, the Galerkin projection, and the
solution of the optimization problem (14), can be computationally intensive, this step is done
only onetime when the ROM is constructed. The cost of this computation does not affect the
run-time of the online step of the model reduction, the step relevant to analysis using the ROM.
Nonetheless, it may be of interest how many times the ROM would need to be run (online) to
compensate the cost of the (offline) pre-processing step. For this reason, estimates of thenumber
of online ROM runs that would be required to offset the offline ROM cost are given for each
example considered following the CPU time data (Tables 5 and9).

4.1. International space station problem

The first numerical example considered here involves a structural model of the Russian ser-
vice module component of the international space station (ISS) [21]. This service module is a
large flexible structure whose dynamics can be described using a linearized form of the equations
of motion (a second order PDE system). Written in first order LTI form, the model consists of
a system of the form (1) withN = 270. The matricesA, B andC defining (1) are downloaded
from the ROM benchmark repository [24]. The matrixA is sparse, as it comes from a finite
element discretization. A single output is considered, corresponding to the first row of the matrix
C. Since this problem is unforcedu(t) = 0, the solution behavior ast → ∞ depends only on the
real parts of the eigenvalues of the system matrixA. It is verified that the FOM system is stable:
the maximum real part of the eigenvalues ofA is −0.0031. The FOM will be reduced using the
POD/Galerkin method [13, 14, 9].
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Figure 2: Outputs forM = 20 unstabilized POD/Galerkin ROM vs. FOM output for ISS problem

To generate the snapshots from which a POD basis will be constructed, the full order model
(1) is solved using a backward Euler time integration schemewith an initial condition ofxN(0) =
1N (N × 1 vector of all ones) and no input (u(t) = 0). A total of K = 2000 snapshots are
collected, everydtsnap = 5 × 10−5, until time t = 0.1. These snapshots are used to compute a
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POD basis of sizeM = 20, and a POD/Galerkin ROM of sizeM = 20 is constructed using this
basis. For this problem, theM = 20 mode POD/Galerkin ROM is found to be unstable with
four unstable eigenvalues. This basis captures essentially 100% of the snapshot energy, and the
valueM = 20 is the smallest basis size such that the ROM exhibits an instability. The numerical
values of the unstable eigenvalues are:λu

1 = 242.5, λu
2 = 32.90+ 26.99i, λu

3 = 32.90− 26.99i,
λu

4 = 2.712. Figure 2 shows the FOM outputy(t) (in red) compared to the unstabilized ROM
output (in blue). The unstabilized ROM output diverges fromthe FOM output around time
t = 0.05 and approaches−∞ ast → ∞ due to the ROM instability. The relative errorErel in the
unstabilized ROM output (22) is 1737.9.

TheM = 20 mode POD/Galerkin ROM for the ISS problem is stabilized first by Algorithm
1, then by Algorithm 2. These results illustrate the superiority of Algorithm 2 over Algorithm 1.

4.1.1. Stabilization via Algorithm 1
First, theM = 20 mode unstable POD/Galerkin ROM is stabilized using Algorithm 1 with

the control matrixBC selected to be anM × 1 vector of all ones:BC = 1M. The next step in
the stabilization is to select the desired eigenvalues of the stabilized ROM matrix̃AM. Let λu

k
for k = 1, ..., 4 denote the unstable eigenvalues forAM, and letλ̃u

k denotes the corresponding
eigenvalues of̃AM (that is, the valuesλu

k will be replaced within the stabilization algorithm).
Here, the following functional form for̃λu

k will be considered:

λ̃u
k = −α · Re(λu

k) + i · Im(λu
k), α > 0, (25)

for k = 1, ..., 4, whereRe(z) and Im(z) denote respectively the real and imaginary parts of a
complex numberz ∈ C andi ≡

√
−1. The transformation (25) flips the sign of the real part of an

unstable eigenvalue ofAM (thereby making it stable), and scales this value by a positive constant
α. Three choices of the parameterα in (25) will be tested here:

• α = 0.1.

• α = 1.

• α = 10.

The objective is to study the error in the stabilized ROM for several choices of̃λu
i . The

choices are admittedly ad hoc, as there is no clear guidelinefor what the eigenvalues of̃AM

should be. Note that asα is increased, the eigenvaluesλ̃u
k are pushed further into the left (stable)

half of the complex plane.
Figure 3 shows the outputs computed by the three stabilized ROMs obtained using Algorithm

1. The relative errors in the stabilized ROM outputs are given in Table 1. All three ROMs are
stable (by construction). The ROM stabilized by Algorithm 1with α = 1 is slightly more accurate
than the ROM stabilized by Algorithm 1 withα = 0.1. This may lead the reader to conjecture
that the accuracy of the stabilized ROM will improve as the eigenvalues are pushed further and
further into the left half of the complex plane. However, theROM stabilized by Algorithm 1 with
α = 10 results demonstrate that this is not the case: the ROM withits eigenvalues pushed the
most into the left half of the complex plane is the least accurate.

The numerical results presented here show that Algorithm 1 works in the sense that it will
stabilize an unstable ROM. Unfortunately, the accuracy of aROM stabilized using this algorithm
is in general unknown before the ROM is stabilized and the ROMoutput is computed. Moreover,
for some choices of̃λu

i the accuracy may be unacceptable.
14
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Figure 3: Outputs forM = 20 POD/Galerkin ROMs stabilized via Algorithm 1 vs. FOM output for ISS problem

Table 1: Relative errors inM = 20 POD/Galerkin ROM for ISS problem stabilized via Algorithm 1

ROM Erel

Unstabilized 1737.8
ROM stabilized via Algorithm 1 withα = 0.1 1.51× 10−2

ROM stabilized via Algorithm 1 withα = 1 1.16× 10−2

ROM stabilized via Algorithm 1 withα = 10 2.26× 10−2

4.1.2. Stabilization via Algorithm 2
TheM = 20 POD/Galerkin ROM for the ISS benchmark is now stabilized using Algorithm 2.

Letλu
k for k = 1, ..., 4 denote the four unstable eigenvalues ofAM. Two options for the eigenvalue

solutions to the optimization problem (14) are considered:

• Option 1:Solve forλu
i ∈ R subject to the constraint thatλu

i < 0 for i = 1, ..., 4.

• Option 2: Solve forλ1, λ
ur
2 , λ

uc
2 , λ4 ∈ R subject to the constraint thatλ1, λ

ur
2 , λ4 < 0 and

setλu
2 = λ

ur
2 + iλuc

2 , λu
3 = λ

ur
2 − iλuc

2 (that is,λu
3 is set to be the complex-conjugate ofλu

2:
λu

3 = λ̄2
u).

Per the discussion at the beginning of Section 4, Option 2 is more general than Option 1 and
has fewer inequality constraints. The optimization problem (14) at the heart of Algorithm 2 is
solved using thefmincon function in MATLAB’s optimization toolbox. TheAlgorithm op-
tion required by this function is set tointerior-point, and an initial guess of−1 for all the
variables is used. For functional forms of the eigenvalues given by both Option 1 and Option 2,
the optimization algorithm converges to a local minimum solution in less than 30 optimization

15



iterations and 30 function evaluations. Table 2 shows some key information about the conver-
gence of the optimization algorithm. The reader may observethat fewer iterations and function
evaluations are required with Option 2 than with Option 1, which has more constraints. Figures
4 and 5 illustrate further the performance of the optimization algorithm for Option 1 and Option
2 respectively. For both options, the optimality conditions are satisfied to the specified tolerance
at the value of the optimal solution33.

Table 2: Performance offmincon interior point method for Algorithm 2 applied to ISS problem

Algorithm 2 Algorithm 2
with Option 1 (real with Option 2 (complex-

eigenvalues) conjugate eigenvalues)
# upper bound constraints 4 3
# optimization iterations 29 27
# function evaluations 30 30

first order optimality at convergence (|∇L|) 4.00× 10−7 5.51× 10−7
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Figure 4: Performance of interior point algorithm for Algorithm 2 with Option 1 (real eigenvalues) as a function of
iteration number (ISS problem)

An interesting question that arises is how the numbers in Table 2 change withM, the reduced
basis size. Numerical experiments reveal that it is not necessarily the case that asM increases,
more optimization iterations and function evaluations arerequired to obtain the solution to the
optimization problem (14). The performance of the interiorpoint method depends on a number of

33For a constrained optimization problem such as (14), the first order optimality conditions require that the gradient
of Lagrangian of the objective functionL(λu

1, ..., λ
u
L) be equal to zero, i.e.,∂L

∂λuk
= 0 for all k = 1, ..., L whereL < M is the

number of eigenvalues ofAM stabilized by Algorithm 2. A detailed discussion of this andother optimality conditions
for the problem (14) can be found in [29, 30].
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Figure 5: Performance of interior point algorithm for Algorithm 2 with Option 2 (complex-conjugate eigenvalues) as a
function of iteration number (ISS problem)

factors, including: (1) the number of optimization dofs (i.e., the number of unstable eigenvalues
of a ROM), (2) the number of upper bound constraints, (3) the character of the objective function,
(4) the proximity of the initial guess to the optimal solution, and (5) the tolerances used in the
optimization algorithm; notM, the reduced basis size, directly. Some additional performance
results of thefmincon interior point method for Algorithm 2 applied to the ISS problem for
different (larger) values ofM are given in Appendix A.2 (Tables 10–11). For the ISS problem, the
ROM does in general become more unstable with increasingM, but more optimization iterations
are not always required (Table 10).

The eigenvalue solutions to the optimization problem (14) with both Option 1 and Option 2
are given in Table 3, compared with the values of the originalunstable eigenvalues ofAM. It is
interesting to observe that the eigenvalues computed by theoptimization algorithm with Option
1 are very different in their numerical values than those computed by the optimization algorithm
with Option 2. Both are local minimizers of the optimizationfunction (14). As discussed in
Section 3.2, the optimization value is not guaranteed to be unique.

Table 3: Original (unstable) eigenvalues ofAM for M = 20 mode POD/Galerkin ROM and new stable eigenvalues
computed using Algorithm 2 (ISS problem)

Original UnstableAM

Algorithm 2 Algorithm 2
with Option 1 with Option 2

(real eigenvalues) (complex-conjugate eigenvalues)
λu

1 2.42× 102 −1.32 −1.98
λu

2 3.29× 101 + 2.70× 101i −2.12× 10−2 −6.47× 10−3 + 1.42× 101i
λu

3 3.29× 101 − 2.70× 101i −2.13× 10−2 −6.47× 10−3 − 1.42× 101i
λu

4 2.71 −1.33× 10−4 −1.38× 10−4
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Table 4 gives the error in the ROM algorithm relative to the FOM output for anM = 20
POD/Galerkin ROM stabilized via Algorithm 2 with Option 1 and Option 2 for the ISS problem.
Both options give a ROM with a relative error between 2.5% and 2.6%. This is a significant
improvement in accuracy compared to the same ROM stabilizedvia Algorithm 1 (Table 1). Most
importantly, in contrast to Algorithm 1, Algorithm 2 guarantees some level of accuracy in the
stabilized ROM, as it minimizes the error in the ROM output byconstruction. Recall that the
accuracy of a ROM stabilized via Algorithm 1 is unknowna priori, and it may require some trial
and error to obtain a stabilized ROM with an acceptable error(Section 4.1.1).

Table 4: Relative errors inM = 20 POD/Galerkin ROM for ISS problem stabilized via Algorithm 2

ROM Erel

Unstabilized 1.74× 103

ROM stabilized via Algorithm 2
2.59× 10−2

with Option 1 (real eigenvalues)
ROM stabilized via Algorithm 2

2.52× 10−2
with Option 2 (complex-conjugate eigenvalues)

Figure 6 shows the output computed from ROMs stabilized using Algorithm 2. The reader
may observe that the stabilized ROM outputs are in much better agreement with the FOM output
than the ROMs stabilized using Algorithm 1 (Figure 3).
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Figure 6: Outputs forM = 20 POD/Galerkin ROMs stabilized via Algorithm 2 vs. FOM output for ISS problem

Table 5 summarizes the CPU times for the time-integration step of the FOM, in addition to the
CPU times for the offline and online stages of theM = 20 POD/Galerkin ISS ROM. The reader
can observe by examining Table 5 that theM = 20 online stage of the POD/Galerkin ROM
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requires approximately 45 times less CPU time than the time-integration stage of the FOM.
To offset the total preprocess time of the ROM (the time required torun the FOM to collect
snapshots, calculate the POD basis, perform the Galerkin projection, and solve the optimization
problem (14)), the ROM would need to be run approximately 53 times. It is worthwhile to
note that that the optimization step of the model reduction,which consists of the solution of the
optimization problem (14) is very fast: it takes less than a minute to complete.

Table 5: Time-integration CPU times for ISS problem: FOM vs.M = 20 POD/Galerkin ROM stabilized via Algorithm
2

Model Operations CPU time (sec)

FOM Time-Integration 1.71× 102

ROM – offline stage

Snapshot collection (FOM time-integration) 1.71× 102

Loading of matrices/snapshots 6.99× 10−2

POD 6.20
Projection 8.18× 10−3

Optimization∗ 2.28× 101

ROM – online stage Time-Integration 3.77

∗Optimization times reported are means of the time required to solve (14) with real eigenvalues and the time required to

solve (14) with complex-conjugate eigenvalues.

4.2. Electrostatically actuated beam problem

The second numerical example is that of an electrostatically actuated beam. The purpose of
this second example is to verify the proposed ROM stabilization approach for a different applica-
tion and to demonstrate the methodology presented in this paper on a larger-scale problem which
has a forcing term (BMu(t) , 0). Applications for this model include microelectromechanical
systems (MEMS) devices such as electromechanical radio frequency (RF) filters [26]. Given a
simple enough shape, these devices can be modeled as one-dimensional beams embedded in two
or three dimensional space. The beam considered here is supported on both sides, and has two
dofs: the deflection perpendicular to the beam (the flexural displacement), and the rotation in
the deformation plane (the flexural rotation). The equations of motion are determined from a
Lagrangian formulation. It is assumed that the beam deflection is small, so that geometric non-
linearities can be neglected. The resulting linear PDEs arediscretized using the finite element
method following the approach presented in [27, 26]. The result of this discretization is a second
order linear semi-discrete system of the form:

Mẍ(t) + Eẋ(t) + Kx (t) = Bu(t)
y(t) = Cx(t),

(26)

whereẍ ≡ ∂2x
∂t2 . The input matrixB corresponds to a loading of the middle node of the domain,

andy(t) is the flexural displacement at the middle node of the domain. The damping matrixE is
taken to be a linear combination of the mass matrixM and the stiffness matrixK :

E = cMM + cKK , (27)
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with cM = 102 andcK = 10−2. Letting ˙̃x(t) ≡ x(t), the second order system (26) can be written
as the following first order system:

(

E M
I 0

) (

ẋ(t)
˙̃x(t)

)

+

(

K 0
0 −I

) (

x(t)
x̃(t)

)

=

(

B
0

)

u(t)

y(t) =
(

C 0
)

(

x(t)
x̃(t)

)

,

(28)

or
ż(t) = Az(t) + B̃u(t)
y(t) = C̃z(t),

(29)

wherez(t) ≡
(

x(t)
x̃(t)

)

∈ R2N and

A ≡
(

0 I
−M−1K −M−1E

)

, B̃ ≡
(

0
M−1B

)

, C̃ ≡
(

C 0
)

. (30)

The matricesM andK in (26) are downloaded from the Oberwolfach model reductionbench-
mark collection [28]. These matrices are sparse, as they come from a finite element discretiza-
tion. These global matrices are then disassembled into their local counterparts, and reassembled
to yield a discretization of any desired size. In the full order model for which results are reported
here,N = 5000, so (29) has 10,000 dofs. It is verified that the full order system is stable: the
maximum real part of the eigenvalues ofA is −0.0016. As for the ISS example, for FOM (29)
will be reduced using the POD/Galerkin method [13, 14, 9]. It is worthwhile to note that, unlike
for the ISS example, the matrixA that defines the system (29) for the electrostatically actuated
beam test case isnot sparse. In particular, it is straightforward to see from (29) that this matrix

is of the formA =
(

A1, A2

)T
whereA1 ∈ RN×N is sparse, butA2 ∈ RN×N is dense. This

example tests therefore the performance of Algorithm 2 on a problem defined by a dense matrix
A.

To generate the snapshots from which POD bases are constructed, the full order model (29)
is solved using a backward Euler time integration scheme with an initial condition ofz(0) = 0
and an input corresponding to a periodic on/off switching, i.e.,

u(t) =

{

1, 0.005< t < 0.01, 0.015< t < 0.02, 0.03< t < 0.035
0, otherwise.

(31)

A total of Kmax = 1000 snapshots are collected, everydtsnap = 5 × 10−5 seconds, until time
t = 0.05 seconds. From these snapshots, anM = 17 mode POD/Galerkin ROM is constructed.
The ROM is found to be unstable, with four unstable eigenvalues. These eigenvalues have the
following numerical values:λu

1 = 16, 053,λu
2 = 48.985,λu

3 = 12.650,λu
4 = 0.05202. The basis

sizeM = 17 is selected since this is the smallest integer for which the ROM exhibits an instability.
It captures effectively 100% of the snapshot energy. Figure 7 shows the FOM outputy(t) (in red)
compared to the unstabilized ROM output (in blue). The relative error in the unstabilized ROM
output (22) evaluates toNaN (“not a number”) on a finite precision arithmetic machine dueto
overflow caused by the ROM instability. TheM = 17 mode POD/Galerkin ROM is stabilized by
Algorithm 2. Algorithm 1 is not considered for the sake of brevity, and since the superiority of
Algorithm 2 has been established in Section 4.1.
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problem

4.2.1. Stabilization via Algorithm 2
The M = 17 POD/Galerkin ROM for the electrostatically actuated beam benchmark is sta-

bilized using Algorithm 2. The four unstable eigenvalues ofAM will be denoted byλu
k for

k = 1, ..., 4. Similarly to the ISS test case (Section 4.1), two options for the eigenvalue solu-
tions to the optimization problem (14) will be considered:

• Option 1:Solve forλu
i ∈ R subject to the constraint thatλu

i < 0 for i = 1, ..., 4.

• Option 2: Solve forλur
1 , λ

uc
1 , λ

ur
2 , λ

uc
2 ∈ R subject to the constraint thatλur

1 , λ
ur
2 , < 0 and set

λu
1 = λ

ur
1 + iλuc

1 , λu
2 = λ

ur
1 − iλuc

1 , λu
3 = λ

ur
2 + iλuc

2 , λu
4 = λ

ur
3 − iλuc

3 (that is,λu
3 is taken to be

the complex-conjugate ofλu
2: λu

3 = λ̄2
u).

Option 2 is more general than Option 1 and has fewer inequality constraints; however, Option
1 may be more consistent with the system dynamics, as the unstable eigenvalues ofA are all
real. As before, thefmincon function in the MATLAB optimization toolbox will be used to
solve the optimization problem (14), with theAlgorithm option set tointerior-point and
an initial guess of−1 for all four variables optimized over in (14). For the functional form
of the eigenvalues assumed in Option 1, the algorithm converges in 60 optimization iterations,
and requires 64 function evaluations. For the functional form of the eigenvalues assumed in
Option 2, which has less constraints than Option 1, fewer optimization iterations and function
evaluations are required to achieve convergence: 31 optimization iterations, and 32 function
evaluations. Some key information about the convergence ofthe optimization algorithm for both
of these options is summarized in Table 6, and Figures 8 and 9.For both options, the optimality
conditions are satisfied to the specified tolerance at the value of the optimal solution.

Similarly to the ISS problem, Appendix A.2 (Tables 12–13) gives some additional perfor-
mance results of thefmincon interior point method for Algorithm 2 for different (larger) values
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Table 6: Performance offmincon interior point method for Algorithm 2 applied to electrostatically actuated beam
problem

Algorithm 2 Algorithm 2
with Option 1 (real with Option 2 (complex-

eigenvalues) conjugate eigenvalues)
# upper bound constraints 4 2
# optimization iterations 60 31
# function evaluations 64 32

first-order optimality at convergence (|∇L|) 2.27× 10−7 8.43× 10−7
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Figure 8: Performance of interior point algorithm for Algorithm 2 with Option 1 (real eigenvalues) as a function of
iteration number (electrostatically actuated beam problem)

of M. ROMs with larger basis sizes possess in general more unstable eigenvalues, and more
optimization iterations are required to obtain the solution of the optimization problem (14) using
the interior point method.

The solutions obtained by Algorithm 2 with both Option 1 and Option 2 are given in Ta-
ble 7, compared with the values of the original unstable eigenvalues ofAM. As for the ISS
benchmark (Section 4.1), the eigenvalues computed by the optimization algorithm with Option 1
are different in their numerical values from those computed by the optimization algorithm with
Option 2. This suggests that the optimization function (14)for this problem has multiple local
minimizers/minima.

Table 8 gives the error in the ROM algorithm relative to the FOM output for anM = 20
POD/Galerkin ROM stabilized via Algorithm 2 with Option 1 and Option 2. For both options,
the relative error in the stabilized ROM output is approximately 2%.

Finally, Figure 10 shows the output computed from ROMs stabilized using Algorithm 2.
There is good agreement between the FOM output and stabilized ROM outputs.
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Figure 9: Performance of interior point algorithm for Algorithm 2 with Option 2 (complex-conjugate eigenvalues) as a
function of iteration number (electrostatically actuatedbeam problem)

Table 7: Original (unstable) eigenvalues ofAM for M = 17 mode POD/Galerkin ROM and new stable eigenvalues
computed using Algorithm 2 (electrostatically actuated beam problem)

Original UnstableAM

Algorithm 2 Algorithm 2
with Option 1 with Option 2

λu
1 1.61× 104 −6.88× 105 −1.16× 105 − 2.25× 104i
λu

2 4.90× 101 −3.54× 102 −1.16× 105 + 2.25× 104i
λu

3 1.27× 101 −1.97× 104 −3.32× 103 − 1.81× 102i
λu

4 5.20× 10−2 −1.40× 104 −3.32× 102 + 1.81× 102i

Table 8: Relative errors inM = 17 POD/Galerkin ROM for electrostatically actuated beam problem stabilized via
Algorithm 2

ROM Erel

Unstabilized NaN

ROM stabilized via Algorithm 2
1.94× 10−2

with Option 1 (real eigenvalues)
ROM stabilized via Algorithm 2

2.02× 10−2
with Option 2 (complex-conjugate eigenvalues)

Table 9 summarizes some CPU times for the electrostatically-actuated beam problem: the
CPU times for the FOM, as well as the CPU times for the offline and online stages of theM =
17 POD/Galerkin electrostatically-actuated beam ROM. The results in this table reveal that the
online stage of the model reduction, the stage relevant to real-time calculations involving the
ROM, took only 6.78 seconds, compared to 7.10× 104 seconds for the time-integration stage
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Figure 10: Outputs forM = 17 POD/Galerkin ROMs stabilized via Algorithm 2 vs. FOM output for electrostatically
actuated beam problem

of the FOM. To offset the total preprocess time of the ROM (the time required torun the FOM
to collect snapshots, calculate the POD basis, perform the Galerkin projection, and solve the
optimization problem (14)), the ROM would need to be run approximately 1× 104 times. This
large number of online ROM runs required to offset the offline ROM cost is due to the large CPU
time associated with the FOM run for this large dense problem. As for the ISS problem, the
optimization step of the model reduction does not contribute significantly to the CPU time of the
offline stage of the ROM, taking just 1.5 minutes.

Table 9: Time-integration CPU times for electrostaticallyactuated beam problem: FOM vs.M = 17 POD/Galerkin
ROM stabilized via Algorithm 2

Model Operations CPU time (sec)

FOM Time-Integration 7.10× 104

ROM – offline stage

Snapshot collection (FOM time-integration) 7.10× 104

Loading of matrices/snapshots 5.17
POD 1.09× 101

Projection 2.55× 101

Optimization∗ 8.79× 101

ROM – online stage Time-Integration 6.78

∗Optimization times reported are means of the time required to solve (14) with real eigenvalues and the time required to

solve (14) with complex-conjugate eigenvalues.
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5. Conclusions

This paper presents a new approach for stabilizing unstablereduced order models for LTI
systems through ana posterioripost-processing step applied to the algebraic ROM system. This
stabilization step consists of a reassignment of the eigenvalues of the ROM system matrix. First,
it is shown how the system’s eigenvalues can be modified by adding to the system a linear control
term, and solving for the control matrix using full state feedback (a.k.a. pole placement) algo-
rithms from control theory. This approach will yield a stable ROM provided the ROM system’s
unstable eigenvalues are controllable and observable; however, although the stabilized ROM will
be stable, it may not be accurate. To ensure accuracy in the stabilized ROM, a second algorithm
is developed, in which the eigenvalues of the stabilized ROMsystem are computed by solving a
constrained nonlinear least-squares optimization problem in which the error in the ROM output
is minimized. This problem is small (< O(M), whereM is the number of dofs in the ROM),
and therefore computationally inexpensive to solve using standard optimization algorithms. The
second stabilization algorithm is the primary contribution of this paper, but both algorithms are
presented and evaluated, as the first algorithm led to the formulation of the second. The ROM
stabilization approaches developed herein are applicableto ROMs constructed usinganychoice
of reduced basis foranyapplication. The proposed algorithms are evaluated on two benchmarks:
the international space station (ISS) problem and the electrostatically actuated beam problem.
Numerical tests reveal that the second algorithm effectively stabilizes an unstable ROM, deliv-
ering a modified ROM that is both stable as well as accurate. Extensions of the new method to
nonlinear problems and predictive applications, including a study of the robustness of the ROM
with respect to parameter changes, will be the subject of future work. For nonlinear problems
with stable fixed points and/or limit cycle solutions (e.g., the classical fluid mechanics problem
involving flow around a cylinder), a natural extension of thealgorithm would involve: (1) deter-
mining the stable fixed points of the system, (2) linearizingthe system around these points, and
(3) using the algorithms developed in this paper to stabilize the linearized system.

Appendix

A.1. Jacobian of objective function in(14)

In this section, the analytic expression for the Jacobian ofthe objective function in the op-
timization problem (14) for the specific case whenu(t) = 0, y ∈ R (there is a single output of
interest), andλu

i ∈ R is derived. In many cases, it is possible to derive analytically the Jacobian
of the objective function in (14) without these simplified assumptions, but this derivation will
be problem-dependent (i.e., it will depend on the specific forcing u(t)). Let yk ≡ yk ∈ R and
yk

M ≡ yk
M ∈ R. If u(t) = 0, the objective function in (14) evaluates to:

f = ||F||22, (32)

where

F ≡



































CSexp(Dt1)S−1x(0)− y1

CSexp(Dt2)S−1x(0)− y2

...

CSexp(DtK)S−1x(0)− yK



































∈ R
K . (33)
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Let J denote the Jacobian off (32). The reader can verify that

J = 2JT
FF ∈ R

L (34)

where the (k, l)th entry ofJF is given by

JF(k, l) = tkCSexp(D̂l tk)S−1x(0), (35)

for k = 1, ..,K andl = 1, ..., L. In equation (35),

D̂l ≡


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
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

∈ R
M×M , (36)

that is,D̂l is a matrix with a single entry ofλu
l in the position (̂l, l̂), wherel̂ is the position of the

lth reassigned eigenvalue in the original matrixD.

A.2. Additional performance results for Algorithm 2

The following tables give some additional performance results (the number of unstable eigen-
values, the number of upper bound constraints, the number ofoptimization iterations, the number
of function evaluations, and the first order optimality at convergence) for Algorithm 2 applied to
the ISS and electrostatically actuated beam problems considered in Sections 4.1 and 4.2 respec-
tively. These results enable one to study how these quantities change asM, the reduced basis
size, is increased. The performance of the interior point method depends more on the number
of dofs in the optimization problem (14), rather than the basis sizeM directly. For the problems
considered herein, asM is increased, in general so does the number of unstable eigenvalues of
the ROM.

Table 10: Performance offmincon interior point method for Algorithm 2 applied to ISS problemas a function ofM
(real eigenvalues)

M 20 40 60

# unstable eigenvalues 4 5 6
# upper bound constraints 4 5 6
# optimization iterations 29 58 45
# function evaluations 30 59 46

first-order optimality at convergence (|∇L|) 4.00× 10−7 9.88× 10−7 2.46× 10−7
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Table 11: Performance offmincon interior point method for Algorithm 2 applied to ISS problemas a function ofM
(complex-conjugate eigenvalues)

M 20 40 60

# unstable eigenvalues 4 5 6
# upper bound constraints 3 3 3
# optimization iterations 27 50 62
# function evaluations 30 52 64

first-order optimality at convergence (|∇L|) 5.51× 10−7 2.46× 10−7 3.94× 10−7

Table 12: Performance offmincon interior point method for Algorithm 2 applied to electrostatically actuated beam
problem as a function ofM (real eigenvalues)

M 17 34 51

# unstable eigenvalues 4 10 14
# upper bound constraints 4 10 14
# optimization iterations 60 78 96
# function evaluations 64 82 100

first-order optimality at convergence (|∇L|) 2.27× 10−7 4.61× 10−7 2.13× 10−7

Table 13: Performance offmincon interior point method for Algorithm 2 applied to electrostatically actuated beam
problem as a function ofM (complex-conjugate eigenvalues)

M 17 34 51

# unstable eigenvalues 4 10 14
# upper bound constraints 2 5 7
# optimization iterations 31 35 78
# function evaluations 32 36 79

first-order optimality at convergence (|∇L|) 8.43× 10−7 6.20× 10−6 1.08× 10−7
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